
1.  Introduction
After decades of studies, it is now generally accepted that solar energetic particles (SEPs) are accelerated by both 
flares and shocks driven by coronal mass ejections (CMEs). SEPs can be classified into impulsive and gradual 
events (Cane et al., 1986; Cliver et al., 1982; Desai & Giacalone, 2016; Kahler et al., 1978, 1984), based on their 

Abstract  In this work we present the High-Energy Particle Detector (HEPD-01) observations of proton 
fluxes from space during the 28 October 2021 solar energetic particle event, which produced a ground-level 
enhancement on Earth. The event was associated with the major, long-duration X1-class flare and the 
concomitant coronal mass ejection (CME) that erupted from the Active Region 12887. This is the first direct 
measurement from space of solar particles emitted during the current solar cycle, recorded by a single instrument 
in the energy range from ∼50 MeV/n up to ∼250 MeV/n. We have performed a Weibull-modeled spectral 
analysis of the energy spectrum in the wide energy range 300 keV–250 MeV, obtained from combination of 
HEPD-01 proton measurements with the ones from ACE/ULEIS, SOHO/EPHIN, and SOHO/ERNE. The good 
agreement between data and model, also corroborated by a comparison with other spectral shapes commonly 
used in these studies, suggests that particles could have possibly been accelerated out from the ambient corona 
through the contribution of stochastic acceleration at the CME-driven shock, even if the presence of seed 
populations influencing spectral shape could not be excluded. Finally, a Solar Proton Release time of 16:01 
UTC ± 13 min and a magnetic path-length of L = 1.32 ± 0.24 AU have been obtained, in agreement with 
previous results for this event. We remark that new and precise data on protons in the tens/hundreds MeV energy 
range—like the one provided by HEPD-01—could shed more light on particle acceleration as well as provide a 
reliable parametrization of solar energetic particle spectra for Space Weather purposes.

Plain Language Summary  In this work we present the observation from space of protons emitted 
by the Sun during the 28 October 2021 solar event. This event was particularly strong and it was even registered 
at Earth by instruments called Neutron Monitors. Such highly energetic phenomena are rather rare and they 
can give a lot of information on particle acceleration and propagation from Sun to Earth. By using data from 
various spacecrafts, like High-Energy Particle Detector, we were able to address some characteristics of 
this event, like its duration, the most probable mechanism that accelerate particles, the path traveled by such 
particles, as well as to constrain the time in which they are accelerated.
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the first ground-level enhancement of 
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•	 �Spectral analysis conducted on a 
energy-extended, time-integrated 
proton spectrum using also ACE, 
ERNE, and EPHIN data

•	 �Time-of-arrival analysis in good 
agreement with the literature and 
highlights the central role of HEPD-01 
at energies around hundreds of MeV
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properties, composition and source. The former ones are generally much less intense and associated with both 
short-duration soft X-ray emission from low altitudes of the flare site (Pallavicini et al., 1977) and fast-drift type 
III radio emission (Wild et al., 1963). Furthermore, impulsive events are thought to be a result of flare accel-
eration (Aschwanden, 2002) and typically present an enrichment in  3He and heavy ions such as Fe (Mewaldt 
et al., 2012; Tylka et al., 2005). In contrast, gradual events are associated with type II radio emission and they are 
believed to be accelerated in the corona by CME-driven shocks (Reames, 1999), producing the highest intensities 
among SEP events. Hybrid events are possible, mixing up characteristics from impulsive and gradual ones (Cane 
et al., 2010; Cliver, 1996; Gopalswamy et al., 2012). Recent studies have made it possible to gain further insights 
into the origin, acceleration, and propagation of SEPs: see, for example, Dayeh et al. (2009), Kahler et al. (2017), 
Mewaldt et al. (2012), Tylka et al. (2005, 2010), Rouillard et al. (2011, 2016), Kollhoff et al. (2021), and Frassati 
et al. (2022). Nevertheless, the contribution and relative weights of flare and shock acceleration are still under 
debate (e.g., Cane et al., 2006; Tylka et al., 2005). An extensive review on the topic can be found in Desai and 
Giacalone (2016), Zhang et al. (2021). The understanding of particle acceleration is even more challenging for 
the most energetic SEP events—generally >500 MeV. Such events generate showers in the terrestrial atmosphere 
whose secondary products can be detected by the network of ground-based neutron monitors (NMs) (Poluianov 
et al., 2017); these are the ground-level enhancements (GLEs). GLEs are rather rare—only 73 have been recorded 
since 1940s (Vainio et al., 2017), the last one being the event under study. GLEs time-profiles are usually char-
acterized by two components: a rapid onset, marking an impulsive injection of particles, which poses temporal 
constraints to any putative acceleration process (Moraal & McCracken, 2012; McCracken et al., 2008; Vashenyuk 
et al., 2006, 2011) and a gradual phase that can be attributed to shock mechanisms (Kahler et al., 2012; Nitta 
et  al.,  2012) or to stochastic acceleration due to the local turbulence and/or the turbulence generated by the 
plasma expansion behind the shock wave (Pérez-Peraza et al., 2018; Reames, 1999; Rouillard et al., 2011). Thus, 
the mechanisms of particle production and acceleration leading to GLEs has not reached a general consensus 
and other scenarios have been suggested (Bieber et  al.,  2002; Gopalswamy et  al.,  2018; Kahler et  al.,  2017; 
Kouloumvakos et al., 2020; Zhang et al., 2021; Zhao et al., 2018). It has also been proposed that—beside the 
acceleration by CMEs via diffusive-shock acceleration (DSA)—stochastic re-acceleration of energetic protons 
might be important, for example, by means of enhanced Alfvénic turbulence in the downstream region of a shock 
wave (Afanasiev et al., 2014, 2018), even if this does not explain the two components observed in GLE events.

All the acceleration processes leave various distinct signatures in the differential energy spectrum, thus providing 
crucial constraints on the origin of SEPs. It is important to notice that the observed spectral features of an event 
could arise from different solar locations as to particle acceleration, for example, the flare region, corona, or 
even the interplanetary space, and/or different mechanisms; for this reason, the overall shape of a solar particle 
spectrum may exhibit a combination of signatures, linked to different processes, usually complex to disentangle, 
like  the transport of energetic particles inside the interplanetary space (Zhao & Zhang, 2016). Moreover, the 
transport itself is still a matter of study, with recent advances regarding the role and the efficiency of propagation 
perpendicular to the mean magnetic field, resulting in a wide spreading of SEPs (Dresing et al., 2012; Dröge 
et al., 2016; Laitinen et al., 2016; Richardson et al., 2014).

The study of GLE spectra is of particular scientific interest because the acceleration processes in such cases are 
very efficient (Mewaldt et al., 2012) and the high-energy solar particles can reach the Earth at 1 AU with mini-
mal disturbances due to scattering (Cliver et al., 1982). Thus, the differential spectrum of protons during GLEs 
can provide crucial information on SEP origin, acceleration and transport. The most common theory to explain 
such events involves the diffusive-shock acceleration (Gordon et al., 1999; Lee, 1983), predicting a power law 
spectrum with an expected roll-over at high energies, due to the energy dependence of the diffusion coefficient 
(Ellison & Ramaty, 1985). Moreover, high-energy SEPs/GLEs are important in the framework of Space Weather, 
as they pose the greatest hazard for spacecraft and instruments, as well as aircraft and also human crews. In 
particular, proton spectra can be used to characterize the particle radiation environment around the Earth (Grimani 
et al., 2012; Laurenza et al., 2019) and estimate the resulting absorbed dose (Berrilli et al., 2014; Brueckner 
et al., 1995)—which is crucial for manned space missions. In addition, they allow to assess the possible effects of 
solar particles on the molecules of the atmosphere (Damiani et al., 2008; Jackman et al., 2005). The high-energy 
portion of such spectra have been found to severely impact various components of spacecraft, starting from the 
electronics. SEPs could also effect signal propagation between Earth and satellites due to Polar Cap Absorption 
(PCA) which results from intense ionization of the D-layer of the polar ionosphere (Zhang et al., 2021).
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In this work, we have analyzed proton data obtained by the High-Energy Particle Detector (HEPD-01) during the 
SEP/GLE event of 28 October 2021. Thanks to its proven observational capabilities, HEPD-01 can give accurate 
and robust SEP measurements in the high-energy portion of the spectrum (up to 250 MeV), bridging the gap 
between low-energy measurements by in-situ spacecraft (like ACE) and the ones from NMs on ground at ∼GeV 
energies.

HEPD-01 data, together with the information gained from other spacecrafts (ACE/ULEIS, SOHO/EPHIN and 
SOHO/ERNE), have allowed us to obtain an energy-extended event-integrated proton spectrum from 300 keV 
to ∼250 MeV. We have also fitted this spectrum using a Weibull distribution, which has been found to be the 
best fit for gradual SEP events (Laurenza et al., 2015) and can be associated with shock acceleration (Pallocchia 
et al., 2017). Moreover, we have performed an analysis on the times of arrival of protons at different energies. 
Finally we have drawn conclusions about the new insights attained by our study about the origin and propagation 
of protons from the Sun to Earth.

2.  The SEP Event of 28 October 2021
The solar event associated with the SEP under analysis, occurred on 28 October 2021, at approximately at 15:15 
UTC in the lower coronal layers. A Full-Halo CME was well imaged by SOHO/LASCO (Brueckner et al., 1995; 
Domingo et al., 1995) as represented in Figure 1 (left panel). This fast (estimated radial velocity ∼1,260 km/s), 
asymmetric Halo CME was observed in LASCO C2 imagery at 15:48 UTC, at approximately the same time when 
a type II radio emission—typically marking the formation of a CME shock—and a type IV radio emission were 
registered. The most probable source for the CME itself was a filament eruption observed on 28 October 2021 at 
t0 = 15:15 UTC in the southern solar hemisphere (white cross in Figure 1, right panel). The filament ejection was 
recorded by SDO/AIA (Lemen et al., 2012; Pesnell et al., 2011) imagers. The filament erupted from the neighbor-
hood of Active Region (AR) 12887, which, at the moment of the expulsion, was close to the disk's lower center 
and directly facing Earth (W02S26); this suggests a non-perfect magnetic connectivity, even more so because the 
associated SEP event lasted about 6 days. This AR was particularly active, emitting a series of C- and M-class 
flares and culminating in a major, long-duration X1.0-class solar flare at 15:35 UTC (started at 15:17 and ended 
at 15:48 UTC), either triggered by or triggering the filament eruption (Georgoulis et al., 2019).

Figure 1.  Left panel: composite image of the Sun, created with the Atmospheric Imaging Assembly (AIA) 304, LASCO C2 and C3 images approximately 2 hr after 
the launch of the coronal mass ejection. Right panel: AIA 193 Full disk image of the Sun, approximately at the time of the filament eruption. The white cross marks the 
position of the erupting filament that appears as a dark structure on the lighter background.
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The association of the CME with the filament expulsion is straightforward, given the CME characteristics (full-
halo CME, slightly displaced toward the South of the ecliptic) and the filament position on the disk (white cross 
in right panel of Figure 1). The images, acquired by the COR2 instrument onboard STEREO-A, corroborate this 
interpretation, confirming that part of the CME was ejected directly toward the Earth. The high efficiency of the 
eruption in accelerating energetic particles, likely in the strong CME-driven coronal shock wave, and the favora-
ble position of the CME source help explain the signature of a GLE detected minutes later by the Neutron Moni-
tor network (Mavromichalaki et al., 2011). Indeed, several NMs detected an increase in count rates from around 
16:00 UT on 28 October 2021 just until next midnight, as reported in the official database of Neutron Monitor 
count rates during GLEs at: https://gle.oulu.fi/. The GLE#73 is therefore the first GLE event of Solar Cycle 25 
(SC-25). The appearance of a GLE event at the beginning of SC-25 might indicate that, after a minimum quite 
similar to the one before SC-24, an unexpected sudden increase in solar activity starting in late 2020 is present 
(Jain et al., 2021) and that the amplitude of this Solar Cycle may be higher than SC-24 (Diego & Laurenza, 2021; 
Penza et al., 2021).

Figure 2 (first two panels) shows the temporal profile of the SEP event up to about 50 MeV, as seen by EPHIN 
(Müller-Mellin et al., 1995) and ERNE (Torsti et al., 1991)—both mounted on the SOHO spacecraft at Lagran-
gian Point L1—in three and five energy intervals, respectively. An overall ∼300x variation of ∼50 MeV proton 
fluxes, due to the injection of solar protons, was registered by HEPD-01 (at Low-Earth Orbit), as can be seen from 
the third panel of Figure 2. The increase was not only limited to low-energy particles, but it involved also protons 

Figure 2.  Time evolution of the 2021 October solar energetic particle event, as seen by EPHIN and ERNE (first two panels)—both located on the SOHO spacecraft 
placed in the Lagrangian Point L1—in 3 and 5 energy intervals, respectively. The passage of the shock is evident in both the time-profiles. A >300x variation of 
∼50 MeV proton fluxes was registered by the High-Energy Particle Detector at Low-Earth Orbit (third panel). Finally, time-profiles of two Neutron Monitors on ground 
(South Pole and Rome) are shown in the fourth panel.
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with energies >200 MeV. The onset of the SEP appears to be rapid, with a gradual fall to undisturbed levels in 
∼6 days for the low-energy protons. Finally, data from two Neutron Monitors on ground (South Pole and Rome) 
are shown in the fourth panel of Figure 2. Due to its location at high latitudes (low cutoff rigidity), the South 
Pole NM shows the signature of a GLE, whereas the Rome NM (located at ∼40°N of latitude) did not record any 
increase (high cutoff rigidity). As a matter of fact, the GLE#73 extended to rigidity of about 2 GV ∼1.26 GeV.

3.  Limadou Mission and High-Energy Particle Detector
The CSES-01 satellite (Shen et  al.,  2018) was launched on 2 February 2018, and is currently flying on a 
sun-synchronous polar orbit at a ∼507 km altitude, with a 5-day revisiting periodicity. It is the first of a series of 
multi-instrument satellites, scheduled for launch in a few years, mainly dedicated to the monitoring of the elec-
tromagnetic field, plasma and particle perturbations in the ionosphere and magnetosphere, either due to natural 
sources, like earthquakes or solar events, or artificial emitters. Despite the fact that all payloads on board the 
satellite are switched-off at latitude below −70° and above +70°, the orbital characteristics of CSES-01 allow for 
a detailed investigation of the high-latitude regions of the Earth—the ones more sensitive to the influence of the 
Sun. HEPD-01 is one of the nine instruments on board the satellite; it was designed and built in the framework 
of the CSES/Limadou project by the Italian branch of the CSES Italian-Chinese collaboration. It is a light and 
compact payload (40.36 × 53.00 × 38.15 cm, total mass ∼45 kg), made up of a series of sub-detectors: from the 
top of the detector, two double-sided silicon microstrips planes (213.2 × 214.8 × 0.3 mm) providing tracking 
information, a layer of plastic segmented scintillator (6 paddles, 20 × 3 × 0.5 cm each), a range calorimeter for 
energy measurement, composed of a stack (TOWER) of 16 plastic scintillators, P1…P16 (15 × 15 × 1 cm), and, 
finally, a 3 × 3 matrix of Lutetium-Yttrium Oxyorthosilicate (LYSO) inorganic scintillator crystals (5 × 5 × 4 cm). 
The instrument is surrounded—laterally and at the bottom—by 5 plastic scintillators which reject particles that do 
not deposit all their energy inside the detector (VETO). The trigger system comprises the stripped scintillator, to 
recognize multiple events, and the first and second plane of the calorimeter. The detector is optimized to measure 
electrons in the 3–100 MeV energy range, and protons between 40 and 250 MeV, as well as light nuclei. The 
HEPD-01 capabilities for galactic and trapped protons and Space Weather studies have already been assessed in 
Bartocci et al. (2020), Martucci et al. (2022), Palma et al. (2021) and in Piersanti et al. (2022). More technical 
details on the instrument itself can be found in Picozza et al. (2019), Ambrosi et al. (2020), Sotgiu et al. (2020), 
and Ambrosi et al. (2021).

4.  HEPD-01 Proton Data
The selection of protons in HEPD-01 is described in detail in Bartocci et al.  (2020). In order to give a valid 
trigger to start the data acquisition process, a proton must cross a single paddle of the trigger plane (to avoid 
multi-particle events and reduce secondaries) and at least the first two planes of the upper calorimeter, P1 and P2. 
Even under high particle rates expected during SEP events or crossing of the South Atlantic Anomaly, no major 
issues of saturation have been observed. After a valid trigger is acquired, only protons fully contained (e.g., those 
that stop inside the TOWER + LYSO sub-detector) are included in the final flux sample, while particles gener-
ating signal in one of the VETO planes are discarded to guarantee that all the energy of the primary particle is 
deposited inside the instrument. The discrimination between protons and other particle populations is performed 
using the P1 signal distribution as a function of the total energy released inside the TOWER + LYSO sub-detector, 
as shown in Figure 2 of Bartocci et al. (2020). Other auxiliary selections are required to further clean the sample. 
The same selections are also applied to a dedicated GEANT4 MonteCarlo simulation to estimate the geometrical 
factor, see Figure 4 of Bartocci et al. (2020). Selection efficiencies are obtained through dedicated simulations 
as well and calibrated—where possible—with in-flight data. For what concerns the systematic uncertainties, 
we used the same approach employed in Bartocci et al. (2020): such systematics as a function of energy can be 
found in Figure 5 of that paper. Regarding the geomagnetic selection applied to discriminate between protons 
coming from outside the magnetosphere and the under-cutoff re-entrant albedo populations, we made use of 
a rigidity cutoff map obtained using a dedicated simulation with the Tsyganenko 96 magnetospheric model 
(Tsyganenko, 1995) and with the external magnetic field input parameters corresponding to the period of the 
SEP event. A parallel approach was implemented using the AACGM (Altitude-Adjusted Corrected Geomag-
netic) coordinates reference frame (Stephens et al., 2017). In this way, we corrected the estimation of the McIl-
wain parameter L—hereafter L shell—obtained through the International Geomagnetic Field Reference (IGRF) 
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model (Erwan et al., 2015). In this latter case, we selected only portions of the 
CSES-01 orbit that were above a value of the L-parameter greater than 7, to 
assure that all coming protons with energy >50 MeV were of cosmic origin 
(i.e., above the cutoff threshold). Of course, the same geomagnetic selection 
was applied to the estimation of the Live Time of the instrument for consist-
ency purposes. This approach—together with the tilt in the geomagnetic field 
and the fact that all payloads are switched-off at ∼70° of latitude—resulted 
in HEPD-01 being able to detect solar and galactic particles with sufficient 
statistics only near the polar caps. The two methods are found to be in very 
good agreement at >50° latitudes where HEPD-01 data are considered in this 
study. Therefore, the proton rigidities selected with the Tsyganenko 96 map 
coincide—inside the systematic uncertainties—with the protons selected 
using the L shell map; the former is shown in Figure 3.

5.  SEP Spectral Analysis
The evolution of the proton energy spectrum of a SEP event—particularly 
during the early hours—is useful to assess the event energy content. Using 

HEPD-01 proton data we have been able to extract 30-min differential proton spectra during the first 24 hr of 
the event—see Figure 4 (left panel)—between 50 and 250 MeV. A fit with a simple power-law shows that the 
spectral index γ of the event in this energy range gradually rises from 1.12 ± 0.49 to 2.47 ± 0.38—see right panel. 
Although the errors associated with the fit parameters are quite large, it is possible to observe a softening of the 
spectral index over time.

One of the main focus of this analysis, however, is to obtain a event-integrated extended-energy spectrum; to do 
so, we need to consider not only HEPD-01 proton data, but also data from other experiments in orbit, includ-
ing ACE/ULEIS (Mason et  al.,  1998), SOHO/EPHIN (Müller-Mellin et  al.,  1995) and SOHO/ERNE (Torsti 
et  al.,  1991) (all accessible from the OMNIWEB website at https://omniweb.gsfc.nasa.gov/ftpbrowser/flux_
spectr_m1.html). The total event-integrated spectrum is calculated by summing up the SEP intensities measured 
in each energy bin over the event duration, which is chosen to go from 28 October (18:00 UTC) to 3 November 
(18:00 UTC), when all the energy channels of the various instruments detected some signature of solar injec-
tion with respect to the background; this technique has already been employed in Bruno et al. (2019). In this 
way, we could construct a spectrum of protons as a function of energy, from ∼300 keV to ∼250 MeV, notably 
increasing the information to be inferred. Moreover, since the lowest energy channels of ACE/ULEIS are affected 
by electron contamination (Bruno et al., 2019) and the high-energy channels of SOHO/ERNE are affected by 

Figure 3.  Map of the distribution of the cutoff rigidities as a function of 
geographic longitude and latitude, obtained using a dedicated simulation with 
the Tsyganenko 96 magnetospheric model.

Figure 4.  Left panel: High-Energy Particle Detector 30-min solar energetic particles (SEP) proton fluxes as a function of energy for the days of 28 and 29 October (see 
color bar on the right). The galactic cosmic-ray (GCR) spectrum—obtained during the 7 days before the start of the SEP—is reported as a comparison (black curve). 
Right panel: time evolution of the spectral index γ. The vertical error bars account for the parameter uncertainties of the fit performed on the single SEP spectra.
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saturation (Miteva et al., 2020), only >300 keV and <80 MeV intensities, 
respectively, have been considered in the analysis for these two experiments. 
Nevertheless, the spectral fitting procedure is usually valid if performed on 
a pure solar spectrum, while our spectrum is still a sum of solar and galactic 
contributions. A further step is estimating the background spectrum that will 
be subtracted from this total proton flux. The removal of this background, 
due to galactic cosmic-ray (GCR) protons, is a delicate issue. Commonly, 
to account for short-time variations, the  time-dependent GCR background 
component is computed for defined time-intervals, by extrapolating to lower 
energies the fit of the measured spectrum performed above the maximum 
SEP energy (Bruno et al., 2018). In the present study, for statistical reason, a 
single GCR proton spectrum has been calculated, specifically the one span-
ning the quiet period from 20 October to 27 October. As a matter of fact, no 
solar flares or CMEs during such period were strong enough to cause distur-
bance in the population of MeV protons; for this reason, our background can 
be considered as stable. Having constructed both total and background proton 
energy spectra, the final, pure solar flux—integrated over the duration of 
the SEP—is obtained by applying a simple bin-by-bin background subtrac-
tion, that is, subtracting for each energy bin the value of the GCR protons 
collected during the 7-day interval prior to the SEP event. A 20% uncertainty 
on each data point has been considered a safe assumption to take into account 
measurements acquired from different instruments and systematic errors due 
to the subtraction. The final, pure, energy-extended event-integrated solar 
proton spectrum is depicted in Figure 5. In total, we used 4 energy channels 
for ACE (320 keV–7.2 MeV), 8 channels for ERNE (13–80 MeV), 4 chan-
nels for EPHIN (4–53 MeV) and 12 channels for HEPD-01 (50–250 MeV).

In order to have a reliable parametrization of the spectrum and get some information about the SEP acceler-
ation sources, we have fitted the event-integrated proton energy spectrum with a Weibull distribution (Frisch 
& Sornette,  1997; Kim et  al.,  2007; Laurenza et  al.,  2013,  2015; Xapsos et  al.,  2000)—also known as the 
two-parameter stretched exponential. It has been suggested in Laurenza et al. (2016); Pallocchia et al. (2017) that 
such distribution can be associated with particle acceleration by killed stochastic processes exhibiting power-law 
growth in time of the velocity expectation, such as the classical Fermi process, or shock-surfing acceleration.

The corresponding function has the form:

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝐴𝐴

(

𝐸𝐸

𝐸𝐸0

)𝑏𝑏−1
√

𝐸𝐸 𝐸𝐸
−

(

𝐸𝐸

𝐸𝐸0

)𝑏𝑏

� (1)

where b is a spectral index, E0 is a characteristic energy and A is a scaling factor, as discussed in Pallocchia 
et al. (2017). The spectral features have been found to be consistent with this Weibull-like shape, over the whole 
duration of the event. For comparison, we have also fitted the same spectrum using both Band and Ellison-Ramaty 
functions. Their mathematical representation is the following:

𝜙𝜙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐸𝐸) =
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and
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𝛾𝛾
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−

𝐸𝐸

𝐸𝐸𝑅𝑅 ,
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More information on the meaning of these functions, their derivation and their parameters can be found in Band 
et al. (1993) and in Ellison & Ramaty (1985), respectively. The resulting, reduced χ 2 is 0.48 for the Weibull, 0.94 
for the Band and 1.12 for the Ellison-Ramaty. The event-integrated spectrum together with the aforementioned 

Figure 5.  The pure, energy-extended event-integrated solar proton spectrum 
obtained by combining the observations of the High-Energy Particle Detector 
with the ones from ACE, SOHO/EPHIN, and SOHO/ERNE. The vertical 
error bars account for both statistical and systematic uncertainties, plus the 
20% added to account for other uncertainties. The blue, red and green curves 
represent the fit performed by using the Weibull, Ellison-Ramaty and Band 
functions respectively.
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functions are depicted in Figure 5 as blue (Weibull), green (Band) and red (Ellison-Ramaty) curves. The Weibull 
seems to be the best choice in this case, but the not perfect magnetic connectivity and the long duration of the 
event itself, together with the intrinsic uncertainties related to the process of event integration, suggest that trans-
port may play a significant role in modifying the source acceleration spectrum. Nevertheless, it is possible that 
the time-integrated spectrum may still contain traces of the imprint of the acceleration at the solar source (Reames 
& Ng, 2010). A discussion will be presented in Section 7.

6.  Arrival Time Analysis
The propagation of SEP particles from the surface of the Sun—where the flare has happened—to 1 AU depends 
on the nature of the event itself. If such particles are all accelerated at the same time and from the same region of 
the Sun, and traverse the same magnetic path-length before being observed, a detector would register a disper-
sion in their velocities; this means that the onset of an event for higher energy particles would occur before 
the onset of lower energy ones, see for example Lin et al. (1981); Reames et al. (1985); Krucker et al. (1999). 
This is particularly true for the GLE under study, where the first arriving particles can be assumed to be almost 
scatter-free. Following the example in Vainio et al. (2013); Thakur et al. (2013) and using HEPD-01, EPHIN 
and ERNE proton data, it is possible to build a distribution of these onset times as a function of the variable 
1/velocity—see Figure 6. A linear fit provides information on the Solar Particle Release or SPR time (intercept) 
and the magnetic path-length traversed by the particles (slope). In order to associate the source of acceleration 
with physical processes at the Sun, such as CME-driven shocks and magnetic reconnection, we compare the SPR 
time—obtained from the fit—with the time of the type II radio emission, the maximum of the X-ray emission and 
the first observation of the CME by LASCO/C2, all marked in Figure 6.

7.  Discussion and Conclusions
Useful information can be obtained from the SEP/GLE energy spectra observed in the interplanetary space, 
both for Space Weather purposes (as discussed in Section 1) and for gaining insights into particle acceleration. 
As a matter of fact, even if transport plays an important role in modifying the spectrum with respect to the one 
at the source of acceleration, the extended energy spectrum could possibly be somewhat representative of the 
one at the source. Therefore, we obtained the energy spectrum for the 28 October 2021 SEP/GLE event in the 
wide energy range 300 keV–250 MeV, by combining the measures from ACE/ULEIS, SOHO/EPHIN, SOHO/
ERNE, and HEPD-01. First, we studied the spectral evolution of the SEP proton spectra (Figure 4), measured by 
HEPD-01 during the early hours of the event, by using a simple power law function, as predicted by the DSA. 
A gradual softening of the γ index is observed—from ∼1.12 to ∼2.47—in good agreement with what has been 
shown in Bruno et al. (2019) for the X8.2 SEP of 10 September 2017, which triggered a GLE. Nevertheless, other 

Figure 6.  Onset time of the October 28 solar event versus 1/velocity, using the High-Energy Particle Detector (HEPD-01),  
EPHIN and ERNE proton data. The red dashed line represents the fit to the experimental points, while the short horizontal 
lines on the y-axis indicate the onset of the type II radio emission, the maximum of the X-ray emission and the first 
observation of the coronal mass ejection by LASCO/C2. The path-length L and Solar Proton Release parameters (see 
text), extracted from the fit, are shown in the bottom-right corner of the plot. As can be seen, HEPD-01 provides proton 
measurements at higher energies with respect to EPHIN and ERNE.
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spectral shapes have been proposed in the past, such as the Band function and the Weibull; the last one has been 
found to be in better agreement with the observed SEP spectrum. In particular, it has been suggested in Laurenza 
et al. (2015) that the Weibull distribution is the best fit for gradual SEP events, as well as for particle enhance-
ments at interplanetary transient shocks (see also Chiappetta et al., 2021) and shocks at corotating interaction 
regions. We found that the Weibull functional form reproduces the 28 October 2021 SEP/GLE event spectrum 
(see Figure 5) better than the alternative proposed functions like Band and Ellison-Ramaty, as can be inferred by 
a comparison between the reduced χ 2—0.48 for the Weibull, 0.94 for the Band and 1.12 for the Ellison-Ramaty—
confirming past results. The Weibull distribution has been also theoretically derived in the framework of stochas-
tic acceleration and associated with acceleration at shock waves (Laurenza et al., 2016; Pallocchia et al., 2017). 
More specifically, these papers present a theoretical derivation of the Weibull spectrum, involving the effect of 
stochastic acceleration at shock waves, in case of momentum anomalous diffusion. Thus, the stochastic accelera-
tion of protons in the downstream region of a shock can be an additional mechanism for producing the observed 
particle energy spectra associated with CME-driven shocks. Indeed, stochastic acceleration in the vicinity of 
shock waves has been found to be efficient Ostrowski (1994) both in terms of energy budget and acceleration 
time, due to the presence of high amplitude MHD turbulence. In addition, Schlickeiser et al. (1993) proposed 
that due to efficient momentum diffusion of particles in the downstream region of the shock, the acceleration is 
dominated by the second order acceleration mechanism and the particle spectra become flatter than in the original 
treatment of diffusive shock acceleration. Stochastic acceleration could also act as a re-acceleration of energetic 
protons by enhanced turbulence in the downstream region of the shock, as proposed by Afanasiev et al. (2014) for 
relativistic energies in case of GLE events.

We found the following values of the Weibull parameters for the SEP/GLE event under study: b = 0.28 ± 0.06 
and E0 = 0.034 ± 0.027 MeV. The b and E0 parameters of the Weibull function are indicative of the acceleration 
efficiency, the former (assuming values between 0 and 1), being related to the rate of the particle energy increase 
during the confinement around the shock, the latter representing a characteristic energy of a particle after a 
typical confinement time. In the case of efficient energization, the mean energy E0 has to be much higher than 
the typical injection energy. Therefore, in the case of GLE#73, we suggest that the energetic particle population 
may be accelerated directly out of the ambient coronal material by a turbulent shock, even if its variability, the 
effect of transport and the presence of seed populations may play a rather important role. Nevertheless, as the 
Weibull distribution has been derived in the framework of stochastic acceleration, the flare acceleration cannot 
be excluded.

For what concerns the arrival times of protons—see Figure 6—we have compared the SPR time obtained from 
the first-degree polynomial fit (1601 UTC ± 13 min) with both the time of the type II radio emission (1528 UTC), 
the maximum of the X-ray emission (1535 UTC) and the observation of the CME by LASCO/C2 (1548 UTC). 
We also have found a magnetic path-length distance traversed by the particles equal to L = 1.32 ± 0.24 AU. It is 
clear that the initial SPR occurs after the onset times of type II emission, in agreement with what has been found 
in Reames (2009). Unfortunately, due to the large errors in the parameters of the fit, we can not give a more confi-
dent interpretation of the mechanisms that rule this GLE event. However, our findings for the path-length and 
SPR time are in a good agreement with the results shown in Papaioannou, A. et al. (2022) and obtained using the 
solar wind speed. It is also important to stress that, thanks to the capabilities of HEPD-01, the Limadou mission 
has provided some solid SEP measurements in the high-energy portion of the proton spectrum, which could help 
in better understanding the nature of the acceleration mechanisms at play in SEP events during the forthcoming 
solar cycle and beyond, as HEPD-01 is still operative and HEPD-02 is in the final stages of integration and it is 
expected to start taking data in 2023.

Data Availability Statement
HEPD-01 data are available, upon request, at https://limadou.ssdc.asi.it/.
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