
1. Introduction

Geomagnetic storms and substorms are among the most important signatures of the variability in the solar-terres-
trial relationship. They are extremely complicated processes, which are triggered by the arrival of solar perturba-
tions, such as interplanetary coronal mass ejections (ICMEs), solar flares, co-rotating interaction regions (CIRs), 
etc. (e.g., Gonzalez et al., 1994; Gosling et al., 1990; Knipp, Delores J. et al., 2021; Miyake et al., 2019; Piersanti 
et al., 2020). These processes, involving a wide range of plasma regions and phenomena which mutually interact 
with both the magnetosphere and ionosphere, are usually non linear. For the last 30 years, numerical simula-
tions, and both ground-based and space-borne observations have been highlighting such a strong feedback and 
coupling process (Hayakawa et al., 2020; Navia et al., 2018; Piersanti et al., 2020; Reyes et al., 2019, and refer-
ences therein). On this topic, the space weather scientific community started more and more to conduct compre-
hensive analysis on several “famous geomagnetic storm past events” (Boteler, 2019; Cliver Edward & Dietrich 
William, 2013; Hayakawa et al., 2019; Hayakawa, Hattori, et al., 2021; Knipp et al., 2018) trying to understand 
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Plain Language Summary On 12 May 2021 a coronal mass ejection (CME) emitted from the Sun 
on 9 May 2021 impacted the Earth, giving rise to a strong geomagnetic storm. This paper present a global 
view of the CME effects observed in the circumterrestrial environment focusing on its propagation and on its 
interaction with the magnetosphere—ionosphere system in terms of both magnetospheric current systems and 
particle redistribution, by jointly analyzing data from interplanetary, magnetospheric, and low Earth orbiting 
satellites. The principal magnetospheric current system activated during the different phases of the geomagnetic 
storm was correctly identified through the direct comparison between geosynchronous orbit observations 
and model predictions. From the particle point of view, we have found that the primary impact of the storm 
development is a sudden loss of relativistic electrons from the entire outer radiation belt. Such kind of a 
global analysis is still the straightforward way available to understand the complex dynamics of the processes 
occurring in the circumterrestrial environment from a space weather point of view.
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why extreme solar-terrestrial storms occasionally form perfect storms (Y. D. Liu et  al., 2019). Those are the 
reasons why, in order to properly understand geomagnetic storms and substorms, it is necessary to consider the 
entire chain of events as a single process. When solar perturbations are analyzed, one has always to consider that 
the dynamic pressure of the solar wind (SW) and the interplanetary magnetic field (IMF) control the strength 
and the spatial structure of the magnetosphere-ionosphere current systems. The changes of these current systems 
are at the origin of geomagnetic activity, and consequently of the variation in the Earth's magnetospheric-ion-
ospheric field as observed by space-borne and ground-based instruments. Indeed, a significant amount of solar 
wind plasma can be dropped off either directly in the polar ionosphere (polar cusp and cap) or stored into the 
equatorial central regions (central plasma sheet, current sheet, etc.) of the Earth's magnetospheric tail, from where 
it is later injected into the inner magnetospheric regions, such as the radiation belts (RBs) (Gonzalez et al., 1994), 
which are a pair of toroidal regions around the Earth, that are filled with magnetically-entrapped charged particles 
of high energy. The growth of the trapped particle population in the inner magnetosphere produces a significant 
increase of the ring current, while the energy released from the magnetotail and injected into the high-latitude 
ionosphere, together with that directly deposited in the polar regions, is responsible for an enhancement of the 
auroral electrojet current systems (Kivelson et al., 1995). The importance of studying these processes lies not 
only in the understanding of the physical processes that characterize the solar-terrestrial environment, but also in 
their impact on technological systems both at ground and in space, not to mention risks to human health (e.g., A. 
Pulkkinen et al., 2017; Baker et al., 2016; Carter et al., 2016; Dyer et al., 2018; Lanzerotti, 2001, 2017; Plainaki, 
Christina et al., 2020; Riley et al., 2018). Space Weather can indeed impact space-based and terrestrial technolog-
ical infrastructures. Sporadic events, such as geomagnetic storms, can influence satellite and payload functions, 
and (in extreme cases) they can even cause the loss of a mission. In fact, a large fraction of space systems operates 
at altitudes of a few hundred to a few ten thousand km above the Earth's surface, in the region of the Van Allen 
RBs. In the Van-Allen-Probes (VAPs) Mission era, spanning the 2010s, the MagEIS and the REPT instruments 
on board the VAPs (Baker et al., 2013; Blake et al., 2013) returned a detailed picture of particle populations in 
the belts and their dynamic rearrangement triggered by solar forcing. Especially the outer radiation belt (ORB), 
which is dominated by energetic electrons up to several MeV, is heavily affected by geomagnetic disturbances, 
while the intermediate slot region, relatively devoid of electrons in quiet period due to pitch-angle scattering, can 
be subject to sudden refilling during strong storms (Baker et al., 2018, and references therein). On the other hand, 
it has been proven that the relativistic electron injection into the inner radiation belt (IRB), which is dominated by 
high-energy protons, is hindered by an “impenetrable barrier” at ∼2.8 R

E, except for a short transient during the 
Halloween storm of 2003 (Baker et al., 2014).

Furthermore, it has been found that the efficiency of electron acceleration is primarily influenced by the IMF 
orientation and solar wind speed and dynamic pressure, and mostly achieved via resonant wave-particle interac-
tions with VLF chorus waves (Koskinen et al., 2017; W. Li et al., 2014).

In this paper, we offer a global analysis of the 12 May 2021 geomagnetic storm, which represents a great space 
weather event occurring a few years after a new solar cycle onsets. We want to highlight here that despite statisti-
cal studies showed that strong geomagnetic storms take place around the maximum and in the declining phase of 
solar cycles (Meng et al., 2019, and reference therein), even under quiet Sun conditions significant space weather 
events can occur (Garcia & Dryer,  1987; Hayakawa et  al.,  2020; Hayakawa, Schlegel, et  al.,  2021; Willis & 
Stephenson, 2000). So the 12 May 2021 represents a significant case whose global analysis could help the current 
understanding about the direct link between solar driver and the relative geomagnetic response.

The paper is organized as it follows: Section 2 presents the analysis of the CME propagation in the interplan-
etary space; Section  3 shows the magnetosphere-ionosphere analysis; Section  4 includes the discussion and 
conclusions.

2. CME-Interplanetary Propagation

The solar event associated with the disturbance under analysis occurred on 9 May 2021. The source was a CME 
with an apparent width of ∼55°, which was well imaged by SOHO LASCO (Brueckner et al., 1995; Domingo 
et al., 1995), as well as STEREO-A COR2 (Howard et al., 2008; Kaiser et al., 2008) and HI-1 (Eyles et al., 2009). 
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While propagating, the ICME created an interplanetary shock that, at L1, anticipated the magnetic cloud by a 
few hours.

2.1. CME Lift-Off and Interplanetary Response

The CME was visually identified as a diffuse plasma structure both on STEREO-A SECCHI-COR2 and SOHO 
LASCO C2 FoVx (Field of Views). It enters COR2 FoV on 9 May 2021 at 11:40 UT ±30 min and reaches the FoV 
edge on 9 May 2021 at 15:40 UT ±30 min, with an estimate PoS (Plane of Sky) velocity VPoS = 600 ± 100 km/s. 
It enters LASCO C2 FoV on 9 May 2021 at 14:30 UT ±30 min and reaches the FoV edge on 9 May 2021 at 16:00 
UT ±1 hr, with an estimate PoS velocity VPoS = 550 ± 100 km/s. The angle subtended by the Earth, Sun, and 
Stereo-A on that day was very close to 45° (see Figure 2), and subsequent observations by HI-1, which imaged 
the CME at a larger distance from the Sun allowed us to obtain another estimate of the ICME PoS velocity: The 
ICME crossed HI-1 FoV from the early hours of 10 May 2021 to late 11 May 2021 with an estimate PoS velocity 
of 500 km/s, obtained via the time-elongation fitting method (Barnes et al., 2019).

The most probable source for the CME was a filament eruption observed on 9 May 2021 at t0 =  11:30 UT 
in the southern solar hemisphere (white cross in Figure 1). The filament ejection has been recorded by SDO 
AIA (Lemen et al., 2012; Pesnell et al., 2011) imagers. At the time of the CME lift-off, a large coronal hole 
(CH—Gray line in Figure 1) was present in close proximity of the filament coordinates. The CH was likely 
associated to a fast solar wind stream affecting the CME propagation. Considering the source on the Sun and the 
hypothesis of radial propagation, we can de-project the CME PoS velocities and estimate its radial velocity as 
Vrad = 720 ± 100 km/s. Also, hypothesizing a cone shape for the CME and a self-similar expansion, the width of 
the CME can be estimated to be 50° ± 5°.

To describe the ICME propagation in the heliosphere we have used the P-DBM (Del Moro et al., 2019; Napole-
tano et al., 2018) model. This model assumes that the ICME dynamics is governed only by its interaction with 
the ambient SW. By employing a fluid dynamic analogy, the force acting on the ICME depends on the square of 
the ICME velocity relative to the ambient SW flow, such that the equation for the ICME radial acceleration reads:

� = −�(�) [� −�(�)] |� −�(�)| (1)

where γ(r) is the so-called drag parameter representing the interaction efficiency between the ICME and the SW, 
w(r) is the SW speed, v is the ICME speed, and r is the distance from the Sun. A good approximation beyond 20 
solar radii is obtained assuming that γ and w are constant throughout the whole ICME propagation (Cargill, 2004; 
Vršnak et  al.,  2013). Under such assumptions, Equation  1 can be solved analytically providing the temporal 
evolution of the ICME's heliospheric distance and velocity. The P-DBM model includes in this framework the 
uncertainties on the initial ICME parameters and on the actual γ and w values, by means of a Probability Distri-
bution Function and a Monte-Carlo like approach (see a detailed description in Napoletano et al., 2018, 2021). 
Our conjecture is that the part of the ICME hitting the Earth interacted with the fast SW generated by the CH over 
the whole duration of its travel, and, consequently, we have estimated its time to travel to 1AU and its velocity 
at arrival. From 10,000 runs of the P-DBM model, the obtained ICME's arrival time and velocity at 1AU are: 
t1AU = 2021-05-12 04:00 ± 6h and V1AU = 640 ± 70 km/s. As evident from the propagation scheme reported in 
Figure 2, the ICME did not hit any relevant interplanetary spacecraft, nor any inner other Solar System planet.

Figure 3 shows the passage of the ICME as observed by the Wind (Lepping et al., 1995) spacecraft located at 
the first Lagrangian point. On 12 May 2021 at ∼05:55 UT, the spacecraft detected a clear interplanetary shock 
(IPs—Red dashed line on the left panels), characterized by a large increase in the SW density (Δnp,W ≈ 38 cm −3, 
panel a), velocity (ΔvSW,W ≈ 120 km/s, panel b) and dynamic pressure (ΔPSW,W ≈ 11 nPa, panel c), as well as 
in the IMF strength (ΔBIMF,W ≈ 8 nT, panel d). Using the Rankine-Hugoniot conditions, under the assumption 
that both energy and momentum are conserved across the shock front (Landau et al., 1960; Oliveira, 2017), we 
have estimated the shock normal, obtaining the following orientation: ΘSE ,W = 177° ± 5° and ΦSE ,W = 111° ± 5° 
(ΘSE ,W and ΦSE ,W being the angles formed by the shock normal with the Sun-Earth line and with the y axis in the 
yz plane, respectively (Xu et al., 2020)). In addition, we have estimated the shock speed as vsh,W = 538 km/s ± 
10 km/s. The propagation of the IPs plane from WIND to the Earth's magnetopause is represented in Figure 3h 
using red dotted lines. From such results, under the assumption of planar propagation along the direction marked 
by the black arrow in Figure 3h, we have predicted both the time and location of the IPs impact onto the magne-
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tosphere (green rectangle in Figure 3h), obtaining 06:34 UT (i.e., 37 min after WIND observations) and 12:49 
(±00:15) LT (i.e., in the noon sector of the magnetosphere), respectively.

The 12 May 2021 ICME was characterized by a significant magnetic cloud observed between ∼07:36 UT and 
∼15:24 UT. Its boundaries have been determined according to the the magnetic field behavior together with 
temperature, velocity and density of solar protons (Burlaga et al., 1981), as depicted in the blue shaded region 
of Figure 3 (left panel). Indeed, plasma temperature decreases from ∼1.7 ⋅ 10 5 K to ∼6 ⋅ 10 4 K (not shown), SW 
speed remains almost constant at ∼480 km/s for about 8 hr (panel b), and the total magnetic field increases to 
22 nT (panel d) with a smooth, pronounced and prolonged (approximately 4 hr) southward rotation at ≈11:30 
UT (panel g).

The storm's main phase was followed by short-lasting substorm activity, as highlighted by |AL|-index values 
which dropped back to <300 nT just after 6 hr from the occurrence of Dst minimum. This activity is likely 
triggered by suitable IMF preconditions (Tsurutani & Zhou, 2003), consisting in ∼3 hr of steadily southward 
vertical field component upstream of the IPs.

Figure 1. EUV image of the Sun by solar dynamics observatory AIA211 at the time of the filament eruption. The white cross marks the position of the filament 
eruption associated with the coronal mass ejection; the gray line marks the position of the coronal hole.
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3. Magnetospheric-Ionospheric Analysis

This section is dedicated to the investigation of the magnetospheric-iono-
spheric system during the 12 May 2021 geomagnetic storm. An accurate 
knowledge of the magnetosphere-ionosphere coupling dynamics, in terms of 
magnetospheric-ionospheric current systems and particle distribution func-
tion (A. Lui et al., 2000; Consolini & De Michelis, 2005; Milan et al., 2017; 
Sitnov et  al.,  2001), in response to the variations of the SW conditions 
(magnetic field orientation, plasma density, velocity, etc.) is crucial in many 
sectors of space weather.

3.1. Magnetosphere

Figure 4a shows the response of the magnetosphere to the arrival of the inter-
planetary shock. According to the Shue et al.  (1998) model, the magneto-
pause nose moved back to ∼6.8RE. Indeed, the shapes of the magnetospheric 
field lines before (black lines) and soon after (red lines) the IPs, evaluated 
by means of the TS04 model (Tsyganenko & Sitnov,  2005), show a large 
field compression. Correspondingly, on May 12 at ∼6:35 UT, GOES 16 
(Figure 4b, left column; LTG16 = UT − 5) and GOES 17 (Figure 4b, right 
column; LTG17  =  UT  −  9.1) measured a sudden variation (Δt ∼ 10  min) 
in the north-south component of the magnetic field (ΔBz,G16  =  −28  nT 
and ΔBz,G17  =  18.8  nT), due to the compression of the magnetosphere, 
coupled with a stretching of the magnetotail field lines (ΔBx,G16  =  22  nT 
and ΔBx,G17  =  14.6  nT), caused by the concurring contribution of the IPs 
impinging onto the magnetopause and of the southward switching of the IMF 
(Piersanti et al., 2020; Piersanti & Villante, 2016; Villante & Piersanti, 2011).

A different situation is visible between May 12 at ∼11:36 UT and May 12 at ∼15:24 UT, correspond-
ing to the arrival of the magnetic cloud. During such time interval, GOES 16 and GOES 17 were located at 
06:36 < LTG16 < 10:24 and 02:36 < LTG17 < 06:24, respectively. In the morning side, GOES 16 observed a 
huge double peaks decrease along all the magnetic field components (Figure 4b, left panels). In the nighside, 
GOES 17 showed positive variations in both Bx and By components (Figure 4b, top and mid right panels), and 
large double peak increase along Bz (Figure 4, bottom right panel). This behavior is the signature of a strong 
stretching and twisting of the magnetospheric field lines and can be interpreted in terms of the concurring contri-
bution of the partial ring current intensification and of a magnetotail current reshaping (Kalegaev et al., 2005; 
Ohtani et al., 2007; Piersanti et al., 2020; T. I. Pulkkinen et al., 2006). Such a scenario is confirmed by the direct 
comparison between a modified TS04 model (hereafter TS04*) marked by red dashed lines in Figure 4, in which 
we considered the contribution of the ring current and tail current (hereafter, TC) alone during the geomagnetic 
storm. It can be easily seen that the TS04* trace gives a good representation of the behavior of the GOES obser-
vations, confirming the key role of the ring current in the morning sector of the magnetosphere and of the tail 
current in the nightside sector of the magnetosphere (e.g., Kalegaev et al., 2005; Ohtani et al., 2007, and reference 
therein). We need to underline here that in order to have the best model representation of the magnetospheric 
field observations, the principal parameters of the TC in the TS04 model was customized in the following way: 
the hinging point RH (defining the position of the plasma sheet bending, separating the rigidly tied near-Earth 
part from the more distant tailward plasma sheet) has been shifted from 8.75RE to 6.85RE (Dayeh et al., 2015; 
Tsyganenko & Sitnov, 2005; Xiao et al., 2016); the current sheet thickness DH has been changed from 5RE to 
5.9RE (Kan, 1973; Thompson et al., 2005; Tsyganenko & Sitnov, 2005). From a pure physical point of view, the 
passage of the magnetic cloud caused both a magnetospheric dipolarization and an intensification of the plasma 
density in the magnetotail neutral sheet, leading to a change in RH and an increase of DH, respectively (A. T. Y. 
Lui, 2016; Murphy et al., 2022, and reference therein).

The largest discrepancies between GOES measurements and TS04* predictions occurred at the peak of the main 
phase. Such discordance might be related to the fact that the Tsyganenko & Sitnov (2005) model estimated, at the 

Figure 2. Geometrical properties for the propagation of the coronal mass 
ejection (CME) in the inner heliosphere. The positions of the inner planets and 
relevant spacecrafts are represented by colored symbols. The interplanetary 
coronal mass ejection (ICME) is represented by the orange shadowed area. 
The lighter orange area represent the 1σ uncertainty about the ICME position 
from the P-DBM runs.
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peak of the main phase, a backward motion of the magnetopause up to 6.2RE, which is behind the GOES satellite 
orbit.

3.2. Ionosphere

Figure 5a shows CSES (China Seismo Electromagnetic Satellite) (Shen et al., 2018) magnetic observations (Zhou 
et al., 2019) along the North-South (BN - left panel), East-West (BE—Central panel) and Vertical (BC—Right 
panel) direction, respectively, from 11 May to 14 May 2021, after removing the internal and crustal contributions 
to the Earth's magnetic field by use of the CHAOS-7 model (Finlay et al., 2020). CSES is a Chinese satellite 
launched on 2 February 2018, hosting a fluxgate magnetometer, two Langmuir probes, an electric field detec-
tor and two particle detectors out of eight payloads. The satellite orbits at about 500 km of altitude (Low Earth 
Orbit - LEO) in a quasi-polar Sun-synchronous orbit, and it passes at about 02:00 and 14:00 local time (LT) in its 
ascending and descending orbits, respectively (Shen et al., 2018).

As expected (Villante & Piersanti,  2011), the action of both the magnetospheric and ionospheric currents 
produced largest variations along BN,Magn and BE,iono, respectively.

In order to quantify the contributions of magnetospheric and ionospheric origin at CSES orbit, we have applied the 
MA.I.GIC. model (Piersanti et al., 2019) to discriminate between different time scales in a time series. Results are 
shown in Figure 5b. Upper and lower panels report observations of high (∼22.3 μHz < f < ∼2.8 mHz; f being the 

Figure 3. Solar wind parameters observed by the WIND spacecraft at L1: (a) Proton density; (b) velocity; (c) dynamic pressure; (d) interplanetary magnetic field 
(IMF) intensity; (e–g) IMF components (BX,IMF, BY,IMF, BZ,IMF respectively) in the GSE reference frame. The red dashed line marks the interplanetary shock as observed 
on 12 May at ≈5:56 UT. The blue shaded region identifies the magnetic cloud; (h) Interplanetary shock propagation in the ecliptic plane. Here red dotted lines 
represent the shock plane propagation in the ecliptic plane and the arrow its direction. The green rectangle represents the estimated impact position of the IPs onto the 
magnetopause.
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frequency) and low frequency (∼2.6 μHz < f < ∼21 μHz) components, respectively. The low frequency behavior 
shows a strong and rapid decrease along the North-South direction during the main phase of the geomagnetic 
storm, and a long lasting increase during the recovery phase. On the other hand, BE,LF and BC,LF show a negligible/
null variation over the entire period under analysis. This behavior is consistent with field variations of magneto-
spheric origin induced by the action of both the asymmetric part of the ring current and tail current along BN,LF 
(Lühr & Zhou, 2020; Neubert et  al., 2001; Park et  al., 2020). This scenario is confirmed by the comparison 
between the CSES contribution of magnetospheric origin and TS04* model (red lines in Figure 5, bottom row). It 
can be easily seen that the TS04* model well represents the variations along BN,LF, BE,LF and BC,LF.

The high frequency components, instead, show large variations along BE,HF. This behavior is consistent with contri-
butions due to both the variations in the ionospheric-current system and magnetospheric-ionospheric coupling 
processes (e.g., field aligned current contribution). Indeed, the positive then negative variations observed in the 
horizontal plane during the main phase can be ascribed to the loading-unloading process between the magneto-
sphere and ionosphere (Consolini & De Michelis, 2005; Piersanti et al., 2020), while, the huge positive variations 
observed during the recovery phase can be due to the ionospheric DP-2 current system (Kamide, 1988; Kamide 
et al., 1997; Piersanti & Villante, 2016; Villante & Piersanti, 2011).

In order to evaluate the rearrangement of electron populations in the Earth's magnetosphere, we have applied 
an approach analogous to the one reported in Palma et al. (2021) for the 26 August 2018 geomagnetic storm, 
using particle data from the MEPED-90° electron telescope on board the NOAA19-POES satellite (Evans & 
Greer, 2004) and the High-Energy Particle Detector (HEPD-01) on board the CSES satellite (Picozza et al., 2019). 
The NOAA19-POES is Sun-synchronous nearly-polar satellite orbiting at LEO altitudes. NOAA19 is currently 
orbiting at an altitude of ∼850 km with a 98.7° inclination and an orbital period of ∼102 min. In both cases, to 

Figure 4. (a) TS04* model prediction of the magnetospheric field lines configurations before (black lines) and after (red lines) the passage of the interplanetary shock; 
(b): Magnetospheric field observations along XGSM (upper panels), YGSM (middle panels) and ZGSM (lower panels) at GOES 16 (LT = UT-5) and GOES 17 (LT = UT-9) 
geosynchronous orbit; red dashed lines represent the TS04*+IGRF model predictions.
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avoid saturation or pile-up issues possibly occurring at extremely high particle rates, the South Atlantic Anomaly 
has been excluded by means of a cut in the available geomagnetic-field values (no B-values lower than 23,000 nT).

Figure 6b) depicts the behavior of MEPED integral electron fluxes over the >0.13 MeV range as a function of the 
McIlwain L parameter (McIlwain, 1961) throughout the pre-storm, storm, and recovery phases. The flux values, 
which are dominated by the contribution of low-energy electrons (Turner et al., 2015), point out a prolonged 
slot-filling event immediately downstream of maximum geomagnetic disturbance, characterized by flux enhance-
ments by a few orders of magnitude. Correspondingly, the plasmapause (full black line), estimated from the X. 
Liu and Liu (2014) model, steps back to L ∼ 3.8.

It is worth noticing that measurements taken in the Van-Allen-Probes era on the occasion of multiple CME-driven 
storms associated with IP shock compressions (Khoo et al., 2018) have established a spatial and temporal correla-
tion between plasmapause location and the initial enhancement of energetic electrons over an energy range pretty 
close to the one spanned by the MEPED electron telescope in Figure 6b). At the onset of 12 May 2021 storm, the 
concurrent substorm activity may represent a suitable candidate for the injection of such source/seed populations 
to be resonantly accelerated by ULF waves at the boundary of the plasmasphere, where the plasma density gradi-
ent affects wave growth (W. Liu & Cao, 2014) and interactions.

Panels (c and d) in Figure 6 contain MEPED fluxes over the >0.65 MeV range and the rate of >4.5 MeV particles 
detected by HEPD-01,respectively. At L shells typical of the ORB, a persistent depletion starts right after the 
onset of the main phase, with no short-term flux recovery to pre-storm levels (Palma et al., 2021, and reference 
therein). These ORB losses in the relativistic range may be consistent with magnetopause shadowing (Herrera 

Figure 5. (a) HPM observations, for 12 May 2021, at Low Earth Orbit along geographic North-South (left panel), East-West (middle panel) and vertical (right panel) 
components; (b) Application of the MA.I.GIC. model to HPM data: Top panels show the contribution of ionospheric origin (∼22.3 μHz < f < ∼2.8 mHz; f being the 
frequency time scale) for the three components of the observed field; lower panels show the contribution of magnetospheric origin (∼2.6 μHz < f < ∼21 μHz) for the 
three components of the observed field. Red lines represent the TS04* model previsions.
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et al., 2016) and outward radial transport, as suggested by a deep incursion of the magnetopause, as estimated 
from the Shue et al. (1998) model, on L shells no higher (Case & Wild, 2013) than ∼6.2 RE in correspondence 
with the peak of the storm (Figure 6a). Further considerations about the role of magnetopause shadowing in the 
May 2021 storm event are reported in Section 4.

Figure 6. Panel (a): Time profile of the solar wind dynamic pressure (OMNI data magenta curve) and position of the magnetopause standoff distance (as estimated 
from the Shue et al. (1998) model, black curve) over the period of 5–16 May 2021; Panel (b): >0.13 MeV electron fluxes measured by MEPED-90° over the same 
period. The superimposed black line represents the position of the plasmapause as estimated from the X. Liu and Liu (2014) model; Panel (c) >0.65 electron fluxes 
measured by the azimuthal MEPED-90° telescope on board the NOAA19 satellite over the same period; Panel (d): Rates of >4.5 MeV particles detected by High-
Energy Particle Detector (HEPD-01) over the same period. Gray shaded areas refer to time intervals for which HEPD data are not available.
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Forbush decreases (FDs) refer to sudden suppression of the short-term galactic cosmic-ray (GCR) intensity 
(Forbush, 1937; Hess & Demmelmair, 1937), either associated with corotating high-speed streams (“recurrent” 
FDs) or caused by transient solar wind structures following coronal mass ejections from the Sun (“non-recurrent” 
FDs). Most of the early observations of such phenomena were carried out by ground-based detectors, such as 
Neutron Monitors and Muon Telescopes (Cane, 2000; Papailiou et al., 2020; Vieira et al., 2012), and by meas-
urements with ionization chambers (Hayakawa, Oliveira, et al., 2021) allowing only for an indirect detection of 
the neutrons generated in the atmosphere. Figure 7 shows the variation of GCR protons measured by the HEPD-
01 instrument, directly from space, across the storm and post-storm of May 2021. The 12-hr-averaged galactic 
protons intensity variation as a function of time has been studied in the >150 MeV energy range (red points in the 
top panel), selecting only particles at the very polar sectors of the CSES-01 orbit, where the geomagnetic cutoff 
is low enough to allow, in the absence of strong proton events (e.g., Piersanti et al., 2017; Tranquille, 1994), for 
galactic proton detection. The applied selection criteria were the same described in Bartocci et al. (2020). A clear 
suppression of GCR intensity after 12 May 2021 0600 UTC is evident, in conjunction with the arrival of the 
storm, as observed by the abrupt variations in Dst index (bottom panel). The overall maximum variation of the 
proton intensity profiles is around −10%.

The observations of cosmic ray variation during solar flares or CMEs provide constraints on the acceleration 
mechanisms and magnetic reconnection processes operative in the flares. CMEs and the shocks they drive cause 
FDs, and since the same phenomena are also responsible for geomagnetic storms, the study of the time-profiles 
of GCRs during such storms could provide valuable information about these space weather disturbances. Further-
more, certain phenomena associated with FDs, such as precursory decreases and spatial anisotropies can give 
advanced information regarding the intensity of geomagnetic storms themselves. For this reasons, it is important 
to have a detector that can study even small FDs (like the one reported in this work) with a sufficient precision 
and directly from space.

4. Discussion and Conclusions

The 12 May 2021 geomagnetic storm was caused by a CME occurred on 9 May 2021 at t0 = 11:30 UT as a 
consequence of a filament eruption observed in the southern solar hemisphere, as recorded by SDO AIA imag-
ers. Under the hypothesis of radial propagation, and de-projecting the CME velocity, we have estimated its radial 
velocity as Vrad = (720 ± 100) km/s. Observations by HI-1 confirmed such results, by imaging of the ICME at 
a larger distance from the Sun from the early hours of 10 May 2021 to late 11 May 2021 with a PoS velocity 

Figure 7. 12-hr averaged galactic cosmic-ray (GCR) proton intensity variation profile as a function of time from High-Energy Particle Detector (HEPD-01) 
observations in the >150 MeV energy range (top panel). A clear suppression of GCR intensity can be spotted after 12 May 2021 0600 UTC. At the same time, it is 
possible to see an abrupt variation in Dst index (bottom panel).

−
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of 500 km/s. It is interesting to note that, at the moment of the CME lift-off, a large CH (gray line in Figure 1) 
was present very close to the filament coordinates, leading to fast SW stream that very likely affected the CME 
propagation in the interplanetary space.

To reproduce the ICME behavior in the interplanetary space, we have used the P-DBM (Napoletano et al., 2018) 
model for the propagation of the CME in the heliosphere. Under the hypothesis that the part of the ICME hitting 
the Earth interacts with the fast SW generated by the CH over the whole duration of its travel, we have estimated 
its time travel to 1AU and its velocity at arrival, obtaining 12 May 2021 at 04:00 ± 6h and 640 ± 70 km/s, respec-
tively. Such estimations are confirmed by the observations at the first Lagrangian point (WIND satellite), which 
detected the ICME arrival on May 12 at 08:23 UT. The magnetic cloud was preceded by an interplanetary shock 
passing through the satellite at 05:56 UT. We have estimated both the shock normal orientation as ΘSE ,W ≈ −177° 
and ΦSE ,W ≈ 111°, and the shock speed as vsh,W ≈ 538 km/s. Under the assumption of a planar propagation, we 
have obtained that the IPs impacted onto the magnetopause in the noon sector.

The consequence of the ICME passage through the Earth's magnetosphere was the reconfiguration of the magne-
tospheric principal current systems. At the moment of the arrival of the IPs, the magnetopause nose moved back 
to ∼6.8 RE, as a consequence of the concurrent contributions of a strong increase in the SW dynamic pressure 
and the southward switching of the IMF orientation (Lee & Lyons,  2004; Piersanti et  al.,  2020; Piersanti & 
Villante, 2016; Villante & Piersanti, 2011; Wang et al., 2009). As to the magnetospheric field observed at geosyn-
chronous orbit, strong variations in both BZ,GSE and BX,GSE were detected. During the passage of the magnetic cloud, 
the magnetospheric field lines turned out strongly stretched and twisted. Indeed, geosynchronous observations 
showed: (a) a huge decrease along both the Bz,GSE and Bx,GSE in the local morning sector (06 : 36 < LTG16 < 10 : 24);  
(b) an increase then decrease along Bz,GSE coupled with a large decrease in both Bx,GSE and By,GSE components in 
the local night sector (02:36 < LTG17 < 06:24). We interpreted those observation as the interplay of the activity 
of the partial ring current, which increased in amplitude due to the reconnection at the magnetopause, with the 
activity of the magnetotail current, which dipolarizes and experiences an increasing of plasma density in its 
neutral sheet caused by the passage of the magnetic cloud (A. T. Y. Lui, 2016; Murphy et al., 2022, and reference 
therein). Indeed, the direct comparison between GOES observations and an “ad hoc” modified Tsyganenko and 
Sitnov (2005) model predictions, confirms our explanation. In fact, the best representation of the magnetospheric 
field is given by the concurring contribution of the ring current and tail current alone, in which the hinging point 
is shifted Earthward (from 8.75RE to 6.85RE) and the current sheet thickness has been increased from 5RE to 5.9RE 
(Dayeh et al., 2015; Kan, 1973; Thompson et al., 2005; Tsyganenko & Sitnov, 2005; Xiao et al., 2016). Such 
a magnetospheric current configuration is coherent with previous analysis and observations (Akasofu,  2020; 
Ghamry et al., 2016; Iyemori, 1990; Piersanti et al., 2017; Tsurutani et al., 2020).

A similar situation was observed in the ionosphere at ∼500 km height, where the low frequency contributions 
(of magnetospheric origin), as obtained by the MA.I.GIC. model (Piersanti et al., 2019), were characterized by 
a strong decrease along the North-South direction during the main phase of the geomagnetic storm, and a long 
lasting increase during the recovery phase. On the other hand, the East-West component showed a negative, then 
positive, variation during both the main and the recovery phase of the geomagnetic storm. This was the clear 
consequence of the concurrent activities of both the asymmetric part of the ring current and tail current along 
BN,LF (Lühr & Zhou, 2020; Neubert et al., 2001; Park et al., 2020; Piersanti et al., 2020). This interpretation has 
been corroborated by the direct comparison between satellite observations and TS04* model predictions, which 
well represents the variations along both BN,LF and BE,LF. The contribution of ionospheric origin (high-frequency 
components) showed larger variations along BE,HF. This behavior can be explained in terms of the overlapping 
contributions from the ionospheric current system and magnetospheric-ionospheric coupling processes. Indeed, 
BE,HF showed a positive then negative variation during the main phase, likely as the consequence of the load-
ing-unloading process between the magnetosphere and the ionosphere (Blockx et  al.,  2009; Consolini & De 
Michelis, 2005; Piersanti et al., 2017). At the same time, during the recovery phase, the ionospheric DP-2 current 
system (Brathwaite & Rostoker, 1981) clearly switched on as inferred by the huge positive variations observed in 
BE,HF (Nishida, 1968; Piersanti et al., 2020; Shinbori et al., 2013).

The redistribution of electrons in the Earth's magnetosphere has been monitored by means of data from particle 
detectors on board the NOAA19-POES and CSES-01 satellites (see Figure 6). We have verified that one primary 
impact of the storm development is the sudden and persistent loss of relativistic electrons from the entire ORB 
(L. Y. Li et al., 2009), whose very rapid, non-recovering dropout can only be the result of non-adiabatic processes 
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permanently removing particles from the system. As previously mentioned, one of these processes can likely be 
the magnetopause shadowing (MS) in combination with outward radial transport, as suggested by the perfect 
match between the deep magnetopause incursion on sub-geostationary distances around 12:50 UTC of May 12 
(Figure 6, panel a) and the abrupt ten-fold increment in solar wind dynamic pressure over the same time interval. 
Indeed, Gao et al. (2015) performed a POES/GOES/OMNI superposed epoch analysis of 193 relativistic-electron 
dropout events over 16 years, identifying the solar wind dynamic pressure and the north-south component of the 
interplanetary magnetic field as the main drivers of electron depletions in the ORB. In their study, while large 
solar wind dynamic pressure values are found to strongly push the magnetopause inward causing electrons to 
escape the magnetosphere, persistent southward interplanetary Bz,IMF preferentially results in electron scattering 
into the loss cone and consequent (wave-driven) precipitation to the atmosphere. Further, we have performed a 
TS04* simulation of the Earth's magnetosphere at the exact time of minimum magnetopause distance, extracting 
X-Y GSM cuts that include the magnetopause location and the iso-contours of the local magnetic field strength 
over the 100–300 nT range (Figure 8). When MS is in action, ORB electrons are depleted on open drift paths that 
were previously closed (Kim et al., 2008; Turner et al., 2012). According to Sibeck et al. (1987) magnetic field 
iso-contours basically correspond to drift paths of equatorially mirroring (i.e., 90° pitch-angle) electrons that, at 
large L shell, are more likely to intercept the magnetopause and get lost. In Figure 8, the magnetopause intercepts 
the 100 nT line near the geosynchronous orbit at the time of maximum compression, which is strongly suggestive 
of MS having a role in removing relativistic electrons from the ORB. The dropouts observed by both MEPED-90° 
and HEPD-01 at relativistic energies penetrate down to L ∼ 4, which is a value significantly lower than minimum 
magnetopause standoff distance. A recent model (Ukhorskiy et al., 2015) suggests that MS and outward radial 
transport should be sufficient to trigger such deep losses, even though this not rarely happens in concurrence with 
wave-induced precipitation to the atmosphere (Herrera et al., 2016). In addition, recent test-particle simulations 
in storm period (Ukhorskiy et al., 2006) address large diamagnetic effects from the enhancement of a partial ring 
current, which once again can result in violation of the third adiabatic invariant and prompt loss of ORB electrons 
to the magnetopause. The absence of long-lasting substorm activity completes the scenario, since earlier studies 
(Antonova et  al.,  2018; Jaynes et  al.,  2015) show a direct relationship between substorms and ORB electron 
replenishment during the storm's recovery phase.

Figure 8. Equatorial GSM cuts of the TS04* modeled magnetosphere at the time of maximum compression. The red 
curve represents the location of the magnetopause boundary. The other colored lines represent the iso-contours of the local 
magnetic field strength over the 100–300 nT range.
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Finally, we detected a small Forbush decrease analyzing energetic protons at 500 km height. Though no clear 
two-step profile can be associated to this structure, the FD timing is consistent with an interplay between the IP 
shock and subsequent magnetic cloud as the origin of the small modulation, in accordance with earlier statistical 
surveys on the subject (Sanderson et al., 1990; Zhang & Burlaga, 1988).

As a closing comment, we want to highlight that despite the Sun is in general more active during its maxi-
mum and declining phases, recent papers showed the occurrence of extreme space weather events close to the 
solar activity minimum (Hayakawa et al., 2020; Hayakawa, Schlegel, et al., 2021; Piersanti et al., 2020). As a 
consequence, we remark that this kind of global analysis - namely, the study of an ICME propagation from its 
source on the Sun across the magnetosphere-ionosphere system to its impact in terms of magnetic field changes 
and magnetospheric particle redistribution, is still the straightforward way available to understand the complex 
dynamics of  the processes occurring in the circumterrestrial environment from a space weather point of view. 
This analysis is an attempt to contribute to the systematization of the information available for these complex 
events, in the wider context of advancing our understanding of the aspects that determine the geoeffectiveness of 
solar activity manifestations.

Data Availability Statement

This work made use of the data from CSES mission (https://leos.ac.cn/#/home).
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